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ABSTRACT 

Let (X, ~ )  be a measurable space and T: X ~  X a measurable mapping. 
Consider a family .4/of probability measures on ~ which satisfies certain 
closure conditions. If ~0 C ~ is a convergence class for ~ such that, for 
every A ~ 0 ,  the sequence ((l/n)Z~_o I IA o~)  converges in distribution 
(with respect to some probability measure v ~ ) ,  then there exists a T- 
invariant element in ./4. In particular, for the special case of a topological 
space X and a continuous mapping T, sufficient conditions for the existence of 
T-invariant Borel probability measures with additional regularity properties 
are obtained. 

Introduction 

Let (X, ~ )  be  a measurab le  space and  T :  X - -  X a measurab le  mapping .  I f  

there is a T- invar iant  probabi l i ty  measure  g on ~¢, then, by  BirkhotVs ergodic 

theorem,  the averages ( 1 / n ) . Z ~ . o l f o T  i converge /t-a.e. for  every 

f ~ ( X ,  d ,  g). Our  pape r  is concerned,  a m o n g  others,  with the converse  o f  

this s ta tement .  

Cons ider  a family  , / / o f  probabi l i ty  measures  on ~¢ which satisfies certain 

closure condit ions.  I f  ~t0 c ~¢ is a convergence class for ~¢/(cf. [3]) such that,  

for  every A E ~¢0, the sequence ( ( l / n ) .  Zr£.o ~ IA o T ~) converges  in dis t r ibut ion 

(with respect  to some  probabi l i ty  measure  v ~ d / ) ,  then  there exists a T- 

invar iant  e lement  in ~/¢. In part icular ,  for  the special case o f  a topological  

space X and a cont inuous  m a p p i n g  T, we obta in  sufficient condi t ions  for  the 

existence o f  T- invar ian t  Borel probabi l i ty  measures  with addi t ional  regulari ty 

propert ies.  
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If oat(" C ~¢ is a semicompact tLlattice satisfying some further conditions, 
then another central theorem of  this paper states that a T- invariant .~V-regular 

probability measure on ~¢ exists provided that, for some K0 ~ o~V and x0 ~ X, 

1 n- - I  
lim sup - • Y, lr.o ° Ti(xo) > 0 

n n i=0 

holds. Especially, this result enables us to extend a theorem of Oxtoby and 
Ulam ([10]) on the existence of invariant Radon probability measures from 

Polish spaces to arbitrary Hausdorff spaces. 

2. Definitions and auxiliary results 

N [No] denotes the set of  positive [nonnegative] integers. The set R of real 
numbers is always assumed to be equipped with the Euclidean topology. 

Let X be an arbitrary set and let ~ (X)  be the power set of  X. 1 e denotes 

the indicator function of a set Q E ~ ( x ) .  For f E R  x we put II f II :=  
sup{ [f(x)l:  x ~ x}.  idx denotes the identity map on X. 

Let ~ be a subset of  ~(X).  Then ~V6 denotes the family of all countable 
intersections of members of :~V, while a(~r)  stands for the v-algebra generated 

by J l .  Furthermore, 

~'(o~¢ ") :=  { F ~  ~'(X) : F n K E . ~  for all K ~ c }  

denotes the collection of all "local o~¢'-sets ". ~ is said to be semicompact if 
every countable subfamily of  ~ having the finite intersection property has 

nonvoid intersection. ~ is called a lattice [J-lattice] if ¢ E 3V and ~ is closed 
under finite unions and finite [countable] intersections. 

By a measure we always understand a [0, oo)-valued a-additive function 
defined on a a-algebra. If/z is a measure on ~¢ and ~ is a subset of  ~¢, then/z is 
said to be ~r-regular if  

l t ( A ) = s u p { I z ( K ) : K E . ~ e ' , K C A }  for all A E~¢. 

If/z and v are measures on ~¢, then we write/z ,~ v if, for anyA ~ ¢ ,  v(A) = 0 

implies/z(A) = 0. We wri te#  ~- v if/t  ,~v and v <~#. 

Let (X, ~ , / z )  be a measure space. If (Y, 8 )  is a measurable space and 

f :  X ~ Yis ~¢, h-measurable, thenf(/z) denotes the image measure of/z under 
the mapping f ,  i.e. f ( l~)(B):=lz( f -~B)  for B E ~ .  If T : X ~ X  is ~¢,~¢- 
measurable, then/z is said to be T-invariant if we have/t  = T(/z). 

I f X  is a topological space, then we denote by ~(X) [~b(X)] the family of  all 
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continuous [and bounded] real-valued functions on X. A cozero-set in X is a 
set of  the form { f ~  O} w i t h f ~  ~(X). We write ~ ( X ) ,  (g(X), ,,~f'(X), ~/(X) for 
the collection of  all closed, open, compact, cozero-sets in X, respectively. We 
will consider also the class 

~ , (X)  :=  (G ~ (#(X) : G = (G) °} = (F  ° : FEar(X)} 

of the so-called regular open sets which is, in general, a proper subclass of 
(~(X). Here .4 [A 0] denotes the closure [interior] of  a subset A of X. 

Finally, ~¢0(X):= a(q/(X)) [/~(X):= a(f~(X))] denotes the Baire [Borel] 
a-field in X. A measure defined on ~o(X) [~¢(X)] is called a Baire [Borel] 
measure on X. A Borel measure # on X is said to be z-smooth iflim~/z(F,) -- 
/~(F) for every net (F~) in ~ ( X )  with F~ ~ F.  ~(X)-regular  Borel measures on 
X are simply called regular. On the other hand, a 3¢'(X)- regular Borel measure 
on a Hausdorff space X is called a Radon measure. 

In the sequel let X be an arbitrary set and ./r c R x a vector lattice (with 
respect to pointwise operations). We write a(~ r) for the smallest a-algebra in X 
making all functions f ~  ~ measurable. F(~C) denotes the subfamily of R ~ 
consisting of all nonnegative linear functionals. For a sequence (f~) in ~ we 
write f~ ~ f i f  (f~) is decreasing and converges pointwise to f E  R x. tl)E F ( ~ )  is 
said to be a-smooth if f~ d0 implies l i m , ~ ( f , ) = 0 .  Define F , ( ~ ) : =  
{(I) E F ( ~ )  : • is a-smooth}. We call ~ a Daniell lattice ([2]) i f F ( ~ )  = Fo(~) .  

If X is a topological space, then a classical theorem of Alexandroff (see [4], 
Theorem 19.3 or [12], Theorem 11.19) states that the limit of  a pointwise 
convergent sequence in F,(~b(X)) is again an element of  F,(~b(X)).  In the 
following we need this property for arbitrary vector lattices of real-valued 
functions: 

We say that the vector lattice ~ c R x has the Alexandroff property if, for 
every sequence (~ , )  c F , ( ~ )  such that (I)(f) :=  lim, O , ( f )  exists in R for all 
f ~ ,  we have O E F , ( ~ ) .  

It is trivial that every Daniell lattice has the Alexandroff property. A deeper 
result is given in 

2.1. PROPOSITION. ~ has the Alexandroff property provided that ~ satis- 
fies the following condition: 

(2.1) l f f ,  f 2 , . . . ~ Q a n d  Y, f k ~ r ,  then Y. f k~e ' f o ra l lAE~(N) .  
kEN k~-A 

PROOF. Let (¢,) C F~(~)  be such that ~ ( f )  :-- l im, ~p,(f) exists in R for 
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all f ~  ~ .  Obviously we have ~6F(Y ' ) .  To prove the a-smoothness of tb it 
suffices to show ~(Y~kEN fk )=  2;kEN tb(fk) for every sequence (fk) in "~+ with 

ZkEN A ~ "~[/"" 
Let such a sequence (fk) be given. In view of (2.1), we can define 

lln(A):-~t~n(k~Afk) and f l (A) :=( I ) (  ~_Afk)k for A ~ , ( N )  and n ~ N .  

(g.) is a sequence of measures on ~(N)  such that lim. #. (A) = / t  (A)E R for all 
A c N. By Nikodym's theorem (see [8], III. 7.4), # is also a measure on ~(N).  
This implies 

 (fk) = . . . . .  n = • , 
k-I k 1 k 

i.e. ~'~'kEN A)  = ~k~N (I~(A)" []  

If (X, ~¢,/t) is a measure space and pE[1 ,  or), then it is an immediate 
consequence of 2.1 that ~r :=  .~p(X, sO, #) has the Alexandroff property. 

We will now give another example of a vector lattice with the Alexandroff 
property. For this purpose consider a J-lattice .~ of subsets ofXwith  X E .~ .  A 
real-valued funct ionfon X is said to be .~-continuous if f -  IF E.~' for all closed 
subsets F o f R .  Note that a func t ionfE R x is .~e-continuous iffthe sets { f >  t} 
and { f_-< t } belong to .~ for all t ~ R. Define 

~g(.~) : = { f ~  R x : f i s  ~_-q~-continuous} 
and 

~b(.~) :_  { f E  ~(.~e) : f i s  bounded}. 

Then ~(--~) and qgb(-~e) are vector lattices containing the constants. 

2.2. EXAMPLES. (a) Let (X, s¢) be a measurable space. Then ~f(~¢) 
[ ~b(~¢)] is the family of all [bounded] ~¢-measurable real-valued functions on 

X. 
(b) I fXis  a topological space, then we have ~(X) = ~(~r(X)) and ~b(X) = 

2.3. PROPOSITION. The vector lattices qB(.~') and ~b(.~) have the Alexan- 
droff property. 

PROOF. Let ~E{~(-~°) ,  ~b(.~)}. We show that ~ satisfies (2.1). Let 
(fk) C ~+ with f := Z k e N f ~  be given. We must prove Zk~A f~ ~ ' f "  for 
every infinite subset A of N. If N - A is finite, then Y~k~A fk = f - -  Zk~N-A fk 
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~e'. Thus we assume 

with n~ < n 2  < • • • 

t E R, we obtain 

and 

that A and N - A  are infinite. Let A = (n~, n2, . . .} 
and N - A  = {rt, r2 . . . .  } with r l < r 2 < . .  ". For any 

Hence ~"kEA A is ~-continuous.  r'l 

From 2.2 and 2.3 we deduce 

2.4. COROLLARY. (a) I f  (X, ,d) is a measurable space, then the vector 
lattice of  all [bounded] ,~l-measurable real-valued functions on X has the 
Alexandroff property. 

(b) I f  X is a topological space, then the vector lattice of  all [bounded] 
continuous real-valued functions on X has the Alexandroff property. 

2.5. PROPOSmON. Let "Co and ~w be vector lattices of bounded real-valued 
functions on X satisfying the following three conditions: 

(i) 1 ~ ~o C ~r; 
(ii) ~0 is dense in "l/" (with respect to the topology of uniform convergence); 

(iii) ~ has the Alexandroff property. 
Then ~o has the Alexandroff property , too. 

PROOF. Let (~ . )  C Fo(~0) be a sequence such that lim. ~ , ( f )  exists in R 
for all f E  ~o. By the Daniell-Stone theorem (see [5], Satz 39.4), there is, for 
any n ~N,  a measure g. on cr(~0) such that ~ , ( f )  = S fd#, f o r f E  ~ .  

Next we show that 

lira ~" fdlt. exists in R for a l l f ~  ~ .  (2.2) 
d 

Note that a ( ~ )  = o'OW0) by (ii). L e t f ~  ~ and e > 0 be given. Put 

e 
e' :=  - -  where a '=  lim ~.(1).  

3(a + 1) 

Choose an f o ~ o  such that ][ f - f o  [[ < e ' .  Then one can find an index no 
such that 
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I ~,~ (fo) - ~ ,  (fo) ] < - and ~,, (1) < a + 1 for all m, n > no. 
3 

This implies 

f fdam- f fda, l <= f If - foldam + l m(fo)-  (fo)l + f I fo-  fld#. 

< g'ti)m(1 ) + -~ + g'f~n(1) 
3 

< e for all m, n > no. 

Hence (2.2) holds. 

Since f has the Alexandroff property, we infer from (2.2) that @ ( f ) : =  

limn S fdl.t,, f E  ~ ,  defines an element @ of F~(~:). In particular, the restric- 
tion of  • onto ~o, i.e. the mapping f E ~ o - - - l i m , ~ ( f ) ,  is an element of  

[] 

2.6. COROLLARY. If(X, ~ )  is a measurable space, then the vector lattice ~v" 
of all ~-step functions has the Alexandroff property. 

PROOF. "V" is dense in ~b(M). By 2.4(a), ~fb(~t) has the Alexandroff 

property. Thus our claim follows from 2.5. [] 

REMARK. If M is an algebra, then the vector lattice ofaU M-step functions 

does not have the Alexandroff property, in general (see 3.5). 

3. Main results 

A sequence (f~) of  real-valued random variables defined on a probability 
space (X, ~ ,  v) is said to converge in distribution (with respect to v) if the 
corresponding sequence (f.(v)) of  image measures converges weakly to some 

probability measure p defined on ~(R)  (i.e. lim.Sgdf~(v)= S gdp for all 
g ~ ~fb(R)). The following result can be proved by the same method as the first 

part of  Theorem 5.4 in [6]. 

3.1. LEMMA. Let (X, ~ ,  v) be a probability space. I f  (f,) is a uniformly 
integrable sequence of real-valued random variables which converges in distri- 
bution, then we have 

lira f fnd  = f id ,  dp, 

where p denotes the weak limit of the sequence ( f. (v)). 
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In the following we consider an arbitrary nonvoid set X and a fixed mapping 
T: X ~ X. Then we define 

n--I 
A.f:=-I  y~ f o T i  

n i-o 
for every n ~ N and every bounded f ~  R x. 

As (A, f )  o T = A, ( f  o T), we simply write A, f o T for this function. Finally, for 
Q E ~(X), we write A,Q instead ofA, 1Q. 

3.2. LEMMA. Let (X, ~t, v) be a probability space and T: X ~ X an ~ ,  M- 
measurable mapping. Furthermore, let "V c R x be a family of bounded d -  
measurable functions such that, for every f E ~ ,  the sequence (A, f )  converges 
in distribution. Then we have 

lip f A.yd,,=lim f A.yordv= f id,,dps for every f ~ ~ .  

Here hden°tes the weak limit of  the sequence (A, f(v)). 

PROOF. 

since 

tA, f l  < l[ f l l  ~ ° l ( X ,  d~, Y) 

Thus 3.1 implies 

lim f A.fdv=f id, dh 

For any f E  (~b(d~f), the sequence (A, f)  is uniformly integrable, 

for all n E N. 

~ r f E ~ .  

Furthermore, as the difference A, fo  T -  A,fconverges in probability to 0, 
(Anfo T(v)) is also weakly convergent to Pi by Slutsky's theorem (see [7], 
Theorem 8.1.1). Therefore 

l i m f  A , , f o T d v = f  id, dgr f o r f ~  

holds again by 3.1. [] 

By means of 3.2, we can now prove the following basic result. 

3.3. THEOREM. Let ~ C R x be a vector lattice of  bounded functions such 
that l ~ "V. Assume that "1 r has the Alexandroff property, f f  T: X-~  X is a 
mapping such that f o T ~ ~ for f ~ ~r, then the following three statements are 
equivalent: 
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(1) There is a probability measure v on tr( ~ )  such that,for every f ~ ~ ,  the 
sequence (A, f )  converges v-a.e. 

(2) There is a probability measure v on cr(~) such that, for every f E  "l/', the 
sequence (A, f )  converges in distribution. 

(3) There is a T-invariant probability measure on tr(~/'). 

PROOF. (1)=*(2) is obvious. 
(2)~(3) .  By assumption, there is a probability measure v on or ( f )  such 

that, for every f ~  ~ ,  the sequence (A,f(v)) converges weakly to a probability 
measure &on  ~(R).  Since T is cr(~), a(~)-measurable,  we infer from 3.2 

lim f A, f dv= l im  f A, f o T d v = f  id, dpy for all f ~  ~e'. 

We define 

and ~ ( f ) : = . ~ f i d i d p l  f o r f ~  and n ~ N .  

Then (~ , )  c F o ( f )  and 

• ( f )  = lim ~ ,  ( f )  = lim ~ ,  ( f  o T) -- ~ f o T) for all f E  f .  
P1 n 

Since ~ has the Alexandroff property, we conclude ~ Fo(~//'). Thus, by the 
Daniell-Stone theorem ([5], Satz 39.4), there is a measure/z on ~r(~v') such that 
dp(f) = S fdg for f ~  ~ .  It follows/z (X) = ~(  1 ) -- lim, ~ ,  (1) -- 1. 

Next we show that/1 is T-invariant. For this purpose, it suffices to prove 
lz(H)=#(T-~H) for all H E J ¢  where ,ge:= { { f =  0} " f E ~ }  is a lattice 
generating tr('//'). Let H ~ Jr' be given, i.e. H -- { f - -  0} for some f E  ~ e~. Put 
f~ :=  1 - min(1, n Ifl ) for n ~ N .  Then ~e'~f, ~ In and hence f~ o T ~ lr-,/~. It 
follows 

#(T-~H) = lim f f~o Tdg = lim tl~(f~ o T ) =  lim ~ ( f , ) =  lim f f~d# = /z(H). 
n . 3  n n n d 

(3)=* (1). Let # be a T-invariant probability measure on o'(~).  Since ~ is a 
subset of .~(X, o(~//'),/z), (1) follows from Birkhoff's ergodic theorem (see [ 13], 
Theorem 1.14). [] 

3.4. R~MARKS. (a) If, in addition to the assumptions of 3.3, ~r is separable 
(with respect to the topology of uniform convergence), then a straightforward 
argument (cf. the proof of Lemma 6.13 in [13]) shows that each of the 
statements (1)-(3) of 3.3 is equivalent to 
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(4) There is a probability measure v on t r (~)  and a set XoEtr('~) with 

v(Xo) = 1 such that lim, A,,f(x) exists for all x ~X0 and a l l f ~  ~ .  

(b) In view of  Birkhoff's ergodic theorem, every T-invariant probability 
measure v on t r (~)  satisfies condition (1) of  3.3. However, the converse is not 
true, in general: Let X : =  [ - 1, 1], T(x) :=  - x and ~ :=  ~b(X). As the 

Lebesgue measure ;t is T-invariant, the sequence (A,,f) converges 2-a.e. for 

every f ~  ~r. Let g E ~+ be such that ~ gd2 = 1 and ~to, l~ gd2 ÷ ½. Denote by v 
the measure on t r (~)  having the density g. Then v ,~ 2 which implies that the 

sequence (A,,f) converges v-a.e, for e v e r y f E  ~ ,  i.e. v satisfies condition (1) of  
3.3. However, v is not T-invariant, since we have v([ - 1, 0]) ~ v([0, 1]). 

The assumption that ~ has the Alexandroff property is essential for the 
validity of 3.3 as the following example shows. 

3.5. EXAMPLE. Let X b e  the set of  integers, ~¢ :-- (A c X : A  or X - A  is 

finite} and ~ the vector lattice of all ~¢-step functions. We consider the 
translation Tx :=  x + 1. Then f o  T ~  r for f ~  ~ r, and it is well known that 

there is no T-invariant probability measure on t r ( ~ ) =  ~(X).  On the other 

hand, it is easy to see that l im, A , f ( x )  exists for all x E X  and a l l f ~  "~. 

3.6. COROLLARY. Let X be a topological space and T: X-- ,  X a continuous 
map. Then the following statements are equivalent: 

(1) There is a Baire probability measure v on X such that,for every f ~ ~gb(X), 
the sequence (A , f )  converges v-a.e. 

(2) There is a Baire probability measure v on X such that, for every f ~ ~b ( X), 
the sequence (An f )  converges in distribution. 

(3) There is a T-invariant Baire probability measure on X. 

PROOV. For ~ := ~b(X), our claim follows from 3.3. Note that ~ has the 
Alexandroff property by 2.4(b). [] 

Now we consider a probability space (X, d ,  v) and an ~¢, ~¢-measurable 

mapping T: X ~ X. If ~ denotes the vector lattice of  all ~t-step functions, 

then it is obvious that the two statements 

(3.1) (A,E)  converges v-a.e, for every E E ~¢ 

and 

(3.2) (A,,f) converges v-a.e, for e v e r y f ~  
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are equivalent. Since ~r has the Alexandroff property by 2.6, we thus infer 

from 3.3 

3.7. COROLLARY. Let (X, d )  be a measurable space and T: X - , X  an 
d ,  d-measurable mapping. Then the following two statements are equivalent: 

(1) There is a probability measure v on d such that, for every E ~ d ,  the 
sequence (A,E) converges v-a.e. 

(2) There is a T-invariant probability measure on d .  

We will now give a sharpening of  3.7 in so far as we will show that even the 
convergence in distribution of the sequence (A,E) for all elements E of a 
certain subclass of d is sufficient for the existence of a T- invariant probability 

measure on d .  For this purpose we need 

3.8. DEFINITION. Let (X, d )  be a measurable space, and let ~ be a family 

of  probability measures on d .  

(a) A subset d o  of  d is said to be a convergence class for d l  ([3]) if, for every 

sequence (#.) in d / ,  the existence of l im.  # . (E)  for all E ~ d o  implies the 

existence of lim. #.(A) for all A ~ d .  
(b) If  T: X---- X is d ,  d-measurable,  then . / / i s  called T-closed if  we have 

T(#) ~ . / / f o r  all # E . / / .  
(c) d / i s  said to be sequentially closed (with respect to the topology of set- 

wise convergence on d )  if, for every sequence (#.) in d /  such that 
# (A) :--- lim. #. (A) exists for all A ~ d ,  we have g E . / / .  

REMARK. Let d o  be a convergence class for d / ,  and let #, v~. /¢ .  If 

#(A) = v(A) for aliA ~ d 0 ,  t hen#  = v. 

3.9. THEOREM. Let (X ,  d )  be a measurable space and T: X-- ,  X an d ,  d -  
measurable mapping. Furthermore, let .14 be a convex family  o f  probability 
measures on d which is both T-closed and sequentially closed. I f  d o  c d is a 
convergence class for ~¢t, then the following three statements are equivalent: 

(1) There is a probability measure v ~.g¢ such that, for every E E do ,  the 

sequence (A,E) converges v-a.e. 
(2) There is a probability measure v ~.1¢ such that, for every E ~ do,  the 

sequence (A,E) converges in distribution. 
(3) There is a T-invariant probability measure # E~¢I. 

PROOF. (1)=*(2) is evident. 
(2)==* (3). By assumption, there is a v ~ ~ such that, for every E ~ do ,  the 
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sequence (A,E(v)) converges weakly to a probability measure PE on ~(R).  
From 3.2 we infer 

l i m f  A , E d v = l i m f  A, T - l E d v = f  idRdpe for E ~ ` d 0 .  

Now we define 

f -1 
I t , ( F ) : =  A, Fdv =-1. "Y~ Tk(v)(F) f o r F ~ ` d  and n ~ N .  

n k-0 

As ,4 / i s  convex and T-closed, we have (It,) c ~¢/. In addition, l im, It,(E) = 
lira. I t , (T-~E) exists for all E 6 `do. Since `do is a convergence class for the 
sequentially closed set ~¢t, there exists a probability measure It E dg such that  
It (A) = lim, It, (A) holds for all A E `d. Furthermore, for E E `d0, we have 

It (E)  = lim It, (E)  = lim It. ( T -  IE) = It ( T -  1E). 
n n 

Thus It is T-invariant by the preceding remark. 
(3)=* (1) holds in view of  Birkhoff's ergodic theorem. 121 

An analysis of the proof  of the implication ( 2 ) 7  (3) of  3.9 reveals that the 
arguments of Wright ([ 14]) can be used to prove the following generalization of 
the main results of [ 14]. 

3.10. THEOREM. Let (X, `d, v) be a probability space and T: X ~ X  an 
`d, `d-measurable mapping such that T ( v ) ~ v. Assume that v ~ ~¢l where d l  is a 
convex family of probability measures on `d which is both T-closed and 
sequentially closed. Furthermore, let `do c `d be a convergence class for .II 
such that, for every E E `do, the sequence (A,E) converges in distribution. Then 
there exists a T-invariant probability measure It E.tg such that 

(i) It ,~v and (ii) It(A) = v(A) for A E `d with v(AAT-1A) = 0 holds. 
If, in addition, T is incompressible (i.e. v ( A - T - I A ) = 0  implies 
v(T-IA --A) = O) or T is an automorphism (i.e. T is bijective and T-1 is also 
`d, ,d-measurable), then (i) can be replaced by the stronger property (i') It ~, v. 

Next we will study several topological special cases of  3.9. 

3.11. COROLLARY. Let X be a topological space and T: X - , X  a 
~o(X), ~o(X)-measurable mapping. Then the following statements are equi- 
valent: 
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(1) There is a Baire probability measure on X such that,for any UE°//(X), 
the sequence (An U) converges in distribution. 

(2) There is a T-invariant Baire probability measure on X.  

PROOF. Let d l  be the family of all probability measures on ~¢ :=  ~0(X). 
By [3], 4.2, ~¢0 :=  q/(X) is a convergence class for a¢/. Thus our claim follows 
from 3.9. [] 

3.12. COROLLARY. Let X be a Hausdorff space and T: X---, X a continuous 

map. Then the following statements are equivalent: 
(1) There is a Radon probability measure on X such that, for any G E f~(X), 

the sequence (An G) converges in distribution. 
(2) There is a T-invariant Radon probability measure on X. 

PROOF. Let ,4/ be the family of all Radon probability measures on X. 
By [3], 4.3, a¢0 :=  (¢(X) is a convergence class for t i t .  Thus 3.9 completes 
the proof. [] 

3.13. COROLLARY. Let X be a regular topological space and T: X-- ,  X a 

continuous map. Then the following statements are equivalent: 
(1) There is a r-smooth Borel probability measure on X such that, for any 

G E f~r(X), the sequence (AnG) converges in distribution. 
(2) There is a T-invariant z-smooth Borel probability measure on X. 

PROOF. Let J /  be the family of all z-smooth probability measures on 
~(X).  By [3], 4.9, s¢0 :=  f~,(X) is a convergence class for die. Now our claim 
follows from 3.9. [] 

3.14. COROLLARY. Let X be a completely regular topological space and 

T: X---, X a continuous map. Then the following statements are equivalent: 
(1) There is a z-smooth Borel probability measure on X such that, for any 

U E°il(X), the sequence (A, U) converges in distribution. 

(2) There is a T-invariant z-smooth Borel probability measure on X. 

PROOF. Let ,4/ be the family of all z-smooth probability measures on 
~(X).  By [3], 4.5, ~¢0 :=  ~/(X) is a convergence class for .at/. Now 3.9 
completes the proof. [] 

3.15. COROLLARY. Let X be a normal topological space and T: X---, X a 

closed continuous map. Then the following statements are equivalent: 
(1) There is a regular Borel probability measure on X such that, for any 

U EalI(X), the sequence (An U) converges in distribution. 
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(2) There is a regular Borel probability measure on X such that, for any 

G E f~r(X), the sequence (A, G) converges in distribution. 

(3) There is a T-invariant regular Borel probability measure on X. 

PROOF. Let J /  be the family of all regular probability measures on 

~(X).  Since T is closed and continuous, d / i s  T-closed. By [3], 4.6 and 4.10, 

both ~//(X) and f~r(X) are convergence classes for d / .  Now our claim follows 

from 3.9. [] 

REMARK. In view of 3.9, one can replace, in the statements 3.10-3.15, the 

convergence in distribution by the convergence a.e. 

Next we will present a substantial generalization of  a theorem due to Oxtoby 
and Ulam [10] (cf. 3.21). As for the proof, we have taken over from [10] the 

basic idea of using Banach limits. However, whereas Oxtoby and Ulam apply 
Carath6odory's outer measure method, our procedure is based on an inner 

measure approach. 

Recall that a Banach limit is a real-valued linear functional L defined on the 

vector space I~ of all bounded sequences of real numbers such that 

(i) L(xo, Xl, x2, . . .) >= 0 if  xk > 0 for all kEN0; 

(ii) L(xo, xl, x2 . . . .  ) = L(xl ,  x2, x3, . . .); 

(iii) L(1, 1, 1 , . . . ) =  1. 
We need the following functional analytic result which is a simple conse- 

quence of the Hahn-Banach theorem (see [9], pp. 64-65). 

3.16. LEMMA. Let y ----- (Yo, Y~, Y2 . . . .  ) be a fixed element o f  loo. Then there 
exists a Banach limit L such that 

1 n--I 
L ( y ) - - l i m s u p - .  Y, Yi. 

, - ~  n i-0 

3.17. THEOREM. Let ~ C ~ ( X )  be a semicompact lattice, ~1 a a-algebra 

in X with ~ c ~¢ c a(~'(J/~)) and T: X-- ,  X an s/ ,  .d-measurable mapping. 

Assume that the family  d l  o f  all ~ - regu lar  probability measures on ~1 is 

T-closed. Furthermore, let (~ c ~ ( X )  be a lattice satisfying the following 

conditions: 

(a) For every K~o*f  , there is a set G ~ (~ such that K c G. 

(f~) KE:)I r and G ~ ( ~  imply K - G ~ : ~ F .  

(y) f~ separates 5 f  (i .e. for any disjoint sets Kl, K2 ~ o~g ", there are disjoint sets 

GI, G2 ~ (~ such that Ki c Gi for i = 1, 2). 
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(5) T-~fg C f~. 
Then the following three statements are equivalent: 

(1) There exist a set Ko~,,ul " and a point x o ~ X  such that lim.A.Ko(xo) > O. 

(2) There exist a set Ko~.,~ and a point x o ~ X  such that 

lim sup A.Ko(xo) > O. 
? I ~ X ;  

(3) There exists a T-invariant element of  .4t. 

PROOF. We only prove (2)=*(3), since the implication (3)=*(1) can be 
proved in the same way as the corresponding part of  Theorem 1 in [ 10]. For 

any Q c X write s o : =  (lo(Tk(Xo)))keNo . Let L be a Banach limit with the 

additional property 

L ( s ~  = lim sup A. Ko(xo) 
n ~ O ~  

(see 3.16). 
Define a set function 7 : f a ~  [0, 1] by 7(G) := L(sz). Obviously 7 is isotone, 

additive and subadditive. For any K~o~d, set it(K) :=  inf{z(G) : K c G ~ fa}. 
By [i 1], Lemma 2, it is a tight content. Thus, by [1], 2.7, it can be extended to a 
~ - r egu la r  measure /z on ~¢. Observe that i t (K)< 1 for all K~,~(" and 

it (K0) > L(sxo) > 0 by (2). Therefore, w.l.o.g., we can and do assume/z(X) = 1, 
i.e. /zE.4¢. Since .4/ is T-closed, we have v : =  T(/ t )E~¢.  To prove the 

T-invariance of/z it suffices to show v(K) < lz (K) for K ~,~l". This implies v </~ 

which together with v(X) =/z(X) yields v =/z. 
Suppose that we have v(K) > #(K) for some K ~ oX('. Choose a set G ~ fa such 

that K c G and v(K) > 7(G). As L is a Banach limit, we have 7(G) = ?(T-~G) 
and so I t ( T - t K ) > 7 ( T - t G ) .  On the other hand, T - t K c  T-~G implies 
# ( T -  tK) _<-- 7(T-  ~G). This contradiction proves our claim. [] 

3.18. COROLLARY. Let ~ C R x be a Daniell lattice o f  bounded functions 

with 1 E ~v'. I f  T : X ~ X is a mapping such that f o T E ~v" for f ~ ~v', then there 

exists a T-invariant probability measure on a( ~ ) .  

PROOF. Put , , ~ : = { { f > l } : f ~ }  and f ~ : = { { f > l ) : f ~ v ' } .  It is 
easy to see that ~ and fa are lattices of subsets of  X which satisfy the 

conditions (a)-(J) of  3.17. In addition, a(" is semicompact by [2], Corollary 1. 
Since 1 E ~v" and ~¢ :-- a('l/') is generated by Jr", every probability measure on 

~¢ is ~-regular .  As condition (1) of  3.17 is satisfied for K0 = X, the proof is 

complete. [] 
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3.19. COROLLARY. Let ~ '  C ~ ( X )  be a ~-lattice with X ~ . ~  such that 

qgb(.Sf) = q¢(.~) holds. Then, for any mapping T: X - ,  X with T - a ~  c .~, 

there exists a T-invariant probability measure on tr( ~b(~) ) .  

PROOF. By [2], Theorem 3, ~ : =  (~b(,,~) is a Daniell lattice with 1 E ~ .  If 

T: X ~ X i s  a mapping satisfying T - ~  C ~ ,  t h e n f o  T ~  f o r f E  ~ .  Thus 

our claim follows from 3.18. [] 

3.20. COROLLARY. Let X be a pseudocompact topological space. Then, for 

any continuous mapping T: X ~ X,  there exists a T-invariant Baire probability 

measure on X.  

PROOF. Apply 3.19 with ~ := ~(X) .  [] 

REMARKS. (a) The assumption of pseudocompactness is essential for the 

validity of  3.20: Consider the translation T(x)  = x + 1 on the real line R. Tis a 

homeomorphism, but there is no T-invariant probability measure on ~(R).  

(b) It seems to be unknown whether the converse of 3.20 is also true, i.e. is a 

topological space X pseudocompact if for any continuous map T: X-- -X a 
T-invariant Baire probability measure on X exists? 

The following result extends Theorem 1 of  [10] from Polish spaces to 
arbitrary Hausdorff spaces. 

3.21. COROLLARY. Let X be a Hausdorff  space and T" X - ,  X a continuous 

map. Then the following three statements are equivalent: 

(1) There exist a compact set Ko c X and a point x o ~ X  such that 

lim, A,Ko(xo) > O. 

(2) There exist a compact set Ko C X and a point x o E X  such that 

lim sup A.Ko(xo) > O. 

(3) There exists a T-invariant Radon probability measure on X.  

PROOF. Immediate consequence of 3.17 with oaf : = ~r(X), f~ : = f~(X) and 

~¢ :=  ~ ( x ) .  [] 

3.22. COROLLARY. Let X be an uncountable set and put 

3i r := { K c X:  K or X - K is finite }. 

I f  T:  X-- .  X is a mapping such that T-log" c Yg holds, then there is a 
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T-invariant probability measure on ~1 : = a(.,~) = {A c X :  A or X - A is 

countable}. 

PROOF. ~ is a semicompact algebra. Thus our claim follows from 3.17 

with f~ :=  :g(. [] 

REMARKS. (a) The following simple example shows that the condition 
T- ' .~(  C Jg  is essential for the validity of 3.22: 

Let X : =  [0, ~ )  and A0 :=  X - (-J.eNA. where A.  denotes the set of  all 
rationals in the interval [ n -  1, n), n CN. Then A.  Ctr(,~f) for n CN0. Fix 

some element x .  C A .  and define T(x )  : = x .  + ~ i f x  CA., n C No. Obviously Tis 
tr(3¢c), a(.~C)-measurable. Assume that there is a T-invariant probability mea- 

sure # on tr(~¢'). Setting p.  :=  g (A . )  for n CN0, we have 

0 ~ Pn ----lt(T-IXn+l) =,U({Xn+,}) -----<,U(An+ 1) ~ - -  Pn+l" 

Thus (p , )  is increasing which, however, contradicts Z,=0~° p, = 1. 
(b) Let X be a countable set. Then the algebra J,C is, in general, not 

semicompact. Equipping Xwith the discrete topology, we infer from 3.21 that, 
for an arbitrary map T: X ~ X ,  a T-invariant probability measure on a(~¢') 
exists if and only if there are two points x, y C X such that 

lim sup A .  { y }(x)  > 0 
n ~ 0 0  

holds. That the latter condition is not implied by the inclusion T -  ~¢" c ~¢" can 
be seen e.g. for the translation T(x )  :=  x + 1 on the integers. 
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